
GETTING STARTED WITH UNIX
ROADMAP:

• The Unix Shell: Working With A Command Line Interface

• Standard Output

• Command-Line Arguments

• Redirecting Standard Output To A File

• Displaying Files: the cat command

• Working With Files In The Unix Shell

• Writing C Programs On Unix Using pico And gcc

• Redirecting Standard Input From A File

TRANSFIGURATION 101:

Initially learning to work with Unix is like learning magic at Hogwarts-- just a
matter of knowing which incantation:

• wingardia leviosum
• petrificus totalus
• stupefy
• sectum sempra

 etc.

The good news is:

• you don't need a wand
• the words are usually much shorter and don't sound like latin
• you can be a squib or a muggle and it still will work
• if you do it wrong usually nothing happens (e.g. you won't be puking

slugs)-- you just get an error message

Like magic though, the only way to learn it is to DO IT. So as you read the ma-
terial that follows, keep your keyboard and screen close by and try out everything
as you go along. There are special practice exercises listed, but that is a bare
minimium-- you should try more!

UNIX NOTES PAGE 1 of 14

THE UNIX SHELL: WORKING WITH A COMMAND-LINE-INTERFACE

The Unix shell is a COMMAND-LINE-INTERFACE (CLI):

• The shell gives you a prompt
• You type a command and hit RETURN
• The command does something
• The shell give you a prompt (and the cycle repeats)

EXAMPLE:

atrium46:arnow>

That's my prompt: "atrium46:arnow>".

Now I'll type in a command:

atrium46:arnow> date

I typed in the "date" command. Now I'll hit the RETURN KEY:

atrium46:arnow> date
Mon Sep 5 11:26:34 EDT 2005
atrium46:arnow>

With blinding speed, the date is displayed, along with a new prompt.

I'll try another command, "who" to see who is logged in on this computer.

atrium46:arnow> date
Mon Sep 5 11:26:34 EDT 2005
atrium46:arnow> who
arnow pts/1 Sep 5 11:25 (ny325.east.verizon.net)
atrium46:arnow>

Just me! How boring.

EDITING YOUR COMMAND LINES:

• DO NOT USE ARROW KEYS!
• TO ERASE THE LAST CHARACTER YOU TYPED: either BACKSPACE or DELETE (which-

ever works-- varies from machine to machine)
• TO ERASE THE ENTIRE LINE: control-U (hold the control key down and type

U)
• ONCE YOU HIT RETURN, YOU CAN'T EDIT YOUR LINE ANY MORE.

PRACTICE:
• Check the date on your computer
• See who's logged in on your computer
• Type in garbage (like "asdf") and hit RETURN
• Type in garbage, but don't hit return-- hit "control-U".

UNIX NOTES PAGE 2 of 14

STANDARD OUTPUT:

In Unix, most commands are programs and most programs are commands.

Programs typically produce some information (output).

Every program in Unix has at least one output pathway: standard output

Standard output by default goes to the screen (where you see it).

EXAMPLE:

atrium46:arnow> whoami
arnow

The standard output of the whoami command is your username. Mine is "arnow". So
here I typed in "whoami": that started the whoami program, and its output ("arnow")
went to the screen-- you can see it above.

EXAMPLE:

atrium46:arnow> w
 12:46pm up 3 day(s), 21:08, 1 user, load average: 0.01, 0.02, 0.02
User tty login@ idle JCPU PCPU what
arnow pts/2 11:45am w
atrium46:arnow>

The standard output of the w command consists of several lines, indicating cur-
rent time, how long the system has been up, who's logged in and what they're doing.

PRACTICE:
• Run a command that displays the date to standard output.
• Run a command that displays a list of who's logged on your

computer to standard output.

UNIX NOTES PAGE 3 of 14

COMMAND-LINE ARGUMENTS:

Every command-line so far has been a single "word": "date", "who", "whoami".

Most commands accept additional words of information on the command-line itself.

These "additional words information" are called arguments.

EXAMPLE:

atrium46:arnow> date
Mon Sep 5 12:24:13 EDT 2005
atrium46:arnow> date -u
Mon Sep 5 16:24:15 GMT 2005
atrium46:arnow>

When I typed "date" by itself I got the date and time in my timezone.

When I typed "date -u" I got the date and time in "universal time" (GMT).

The "-u" is called an argument to the date command.

EXAMPLE:

atrium46:arnow> echo hey
hey
atrium46:arnow> echo hey you
hey you
atrium46:arnow>

The echo command just displays (writes) its arguments to standard output.

PRACTICE:
• Run a command that displays the words "hello world" to

standard output.
• Run the echo command with no arguments: what happens?

UNIX NOTES PAGE 4 of 14

REDIRECTING STANDARD OUTPUT:

Sometimes you want to save the output of a program (a command) into a file.

To do this, you can redirect standard output to a file.

Here's how you do this:

• type the command (but don't hit RETURN!)

• type the greater-than symbol: >
• type the name of the file you want the output to go into

EXAMPLE:

atrium46:arnow> date
Mon Sep 5 12:24:13 EDT 2005
atrium46:arnow> date > rightNow
atrium46:arnow>

When I typed "date" by itself, standard output was not redirected, so I can see
the date and time on my screen.

When I typed "date" with ">rightNow", standard output was redirected to a file
called "rightNow":

• If the file did not exist, the system created it automatically
• If the file did exist, it's old contents were ERASED
• No output appears on the screen-- it all went into the file rightNow

EXAMPLE:

atrium46:arnow> date > aBitLater
atrium46:arnow>

Again I redirected the standard output, this time to another file of my choos-
ing. No data, no output appeared on the screen: it all went to the file aBitLater.

PRACTICE:
• Run a command that puts the current date and time into a

file called "currentTime".
• Run a command that puts the words "hello world" into a

file called "greeting".

UNIX NOTES PAGE 5 of 14

DISPLAYING FILES: the cat command

What's the point of redirecting standard output to a file if you can't see the
contents later?

You can display a file's contents using the cat command.

EXAMPLE:

atrium46:arnow> cat rightNow
Mon Sep 5 12:24:18 EDT 2005
atrium46:arnow> cat aBitLater
Mon Sep 5 12:24:27 EDT 2005
atrium46:arnow>

When you give the cat command an argument, it expects that the argument is a
filename and it displays the file.

If you give the cat command two arguments, it treats each as a name of a file
and displays one file after another. If you mis-type the name of a file, cat com-
plains.

EXAMPLE:

atrium46:arnow> cat rightNow aBitLater distantFuture rightNow
Mon Sep 5 12:24:18 EDT 2005
Mon Sep 5 12:24:27 EDT 2005
cat: cannot open distantFuture
Mon Sep 5 12:24:18 EDT 2005
atrium46:arnow>

PRACTICE:
• Redirect the standard output of "who" to "who.out"
• Redirect the standard output of "date" to "date.out"
• Use echo to create a file named "last" containing the

words "that is all"
• Use the cat command to display the contents of who.out,

date.out and last.
• Redirect the standard output of "date" to "date1"
• Redirect the standard output of "date" to "date2"
• Use the cat command to display both date1 and date2 to-

gether (using just one cat command)
• Now run the same cat command and redirect the standard

output to a file called "twoDates".
• Display the content of twoDates using the cat command.

UNIX NOTES PAGE 6 of 14

WORKING WITH FILES IN THE UNIX SHELL:

In the Unix shell, files are examined, destroyed, renamed and copied using these
commands:

• ls (that's "ell ess"): list the names of your files
• rm remove one or more files (silent: produces no output)
• cp copy a file (silent: produces no output)
• mv rename a file (silent: produces no output)

EXAMPLE:

atrium46:arnow> ls
atrium46:arnow>

This is what you get when you have no files: nothing!

But now I'll create a few files by redirecting standard output:

atrium46:arnow> date >datefile
atrium46:arnow> who >whofile
atrium46:arnow>

So I've created datefile and whofile. Now watch when I run ls:

atrium46:arnow> ls
datefile whofile
atrium46:arnow>

And there they are (see above). Now I'll create another file, remark:

atrium46:arnow> echo now I have two files >remark
atrium46:arnow> ls
datefile remark whofile
atrium46:arnow>

The cp command requires two arguments: the original file and the name of the
copy. I'll use it now to make two copies of my "datefile". Then I'll list my file
names:

atrium46:arnow> cp datefile datefile2
atrium46:arnow> cp datefile datefile3
atrium46:arnow> ls
datefile datefile2 datefile3 remark whofile
atrium46:arnow>

The rm command requires one or more arguments: each argument names a file to be
removed. I'll use it now remove "datefile2". Then I'll list my file names:

atrium46:arnow> rm datefile2
atrium46:arnow> ls
datefile datefile3 remark whofile
atrium46:arnow>

UNIX NOTES PAGE 7 of 14

The mv command renames a file and requires two arguments: the original filename
and the new name for the file. I'll use it now to rename "datefile3":

atrium46:arnow> ls
datefile datefile3 remark whofile
atrium46:arnow> mv datefile3 datefile.copy
atrium46:arnow> ls
datefile datefile.copy remark whofile
atrium46:arnow>

PRACTICE:
• List the files you already have,using the ls command.
• Create six new files, calling them 111 222 333 444 555 666

by redirecting the output of who six times.
• List your files now.
• Copy each of your odd-numbered files (111 333 555) to (re-

spectively) 111.backup 333.backup 555.backup by us-
ing the cp command three times.

• List your files.
• Rename your even-numbered files (222 444 666) to aaa bbb

ccc by using the mv command three times.
• List your files.
• Using the rm command, emove the original odd-numbered

files, and list what you have.
• Can you think of another way of making a copy besides us-

ing the cp command?
• List your files with the ls command but this time add a

"-l" (dash ell) argument. What is all that stuff
that gets displayed?

• Run "ls -l" and redirect the standard output to a file
called "myfiles". Display the file with the cat com-
mand. Then use the same command but stick in a "-n"
as the first argument. What happens? What does "-n"
do in the cat command?

UNIX NOTES PAGE 8 of 14

COMMAND SUMMARY:

list files:
 ls
 ls -l

copy file:
 cp oldfile newfile

rename a file:
 mv oldname newname

display a file:
 cat filename
 cat -n filename

compile a file:
 gcc filename
 (must end in “.c”!)

remove a file:
 rm filename
 (no takebacks!)

redirect output of a program to a file:
 command > outputfile

 command arguments > outputfile

logoff:
 exit

UNIX NOTES PAGE 9 of 14

WRITING C PROGRAMS ON UNIX USING pico AND gcc:

atrium46:arnow> ls -l
total 0
atrium46:arnow> pico hw.c
Sorry, I don't know anything about your "xterm-color" terminal.
atrium46:arnow> export TERM=vt100
atrium46:arnow> pico hw.c

(type in program and then hit control-O)

(hit return)

(type control-X to exit)

UNIX NOTES PAGE 10 of 14

atrium46:arnow> ls -l
total 2
-rw------- 1 arnow faculty 66 Feb 2 07:53 hw.c
atrium46:arnow> cat hw.c
#include <stdio.h>

int main() {
 printf("Hello!\n")
 return 0;
}
atrium46:arnow> gcc hw.c
hw.c: In function `main':
hw.c:5: error: parse error before "return"
atrium46:arnow> cat -n hw.c
 1 #include <stdio.h>
 2
 3 int main() {
 4 printf("Hello!\n")
 5 return 0;
 6 }
atrium46:arnow> pico hw.c

(type control-X to exit)

(type Y to save changes and hit return)
atrium46:arnow> cat -n hw.c
 1 #include <stdio.h>
 2
UNIX NOTES PAGE 11 of 14

 3 int main() {
 4 printf("Hello!\n");
 5 return 0;
 6 }
atrium46:arnow> gcc hw.c
atrium46:arnow> ls -l
total 16
-rwx--x--x 1 arnow faculty 6476 Feb 2 08:05 a.out
-rw------- 1 arnow faculty 67 Feb 2 08:04 hw.c
atrium46:arnow> a.out
Hello!
atrium46:arnow> mv a.out hw
atrium46:arnow> ls -l
total 16
-rwx--x--x 1 arnow faculty 6476 Feb 2 08:05 hw
-rw------- 1 arnow faculty 67 Feb 2 08:04 hw.c
atrium46:arnow> hw
Hello!
atrium46:arnow> hw >output
atrium46:arnow> ls -l
total 18
-rwx--x--x 1 arnow faculty 6476 Feb 2 08:05 hw
-rw------- 1 arnow faculty 67 Feb 2 08:04 hw.c
-rw------- 1 arnow faculty 7 Feb 2 08:08 output
atrium46:arnow> cat output
Hello!
atrium46:arnow> cat hw.c | mail -s "CIS 1.5 HW" arnow@acm.org
/users1/arnow/mbox/outbox: No such file or directory
atrium46:arnow> cp hw.c hw2.c
atrium46:arnow> ls -l
total 20
-rwx--x--x 1 arnow faculty 6476 Feb 2 08:05 hw
-rw------- 1 arnow faculty 67 Feb 2 08:04 hw.c
-rw------- 1 arnow faculty 67 Feb 2 08:12 hw2.c
-rw------- 1 arnow faculty 7 Feb 2 08:08 output
atrium46:arnow>

PRACTICE:
• Use pico to write C source file called bye.c -- the pro-

gram should just print the message "bye bye!". Save
the file and exit pico and list your files with ls
to make sure that bye.c is there. Then compile bye.c
using the gcc command. If there are any errors, go
back into pico and fix them. Use ls again to make
sure you have an a.out file. Then rename the a.out
file to "bye" and execute the program. Execute it
again and redirect the standard output to a file
called "bye.out".

• Follow the same steps to create a C source file called
tenfold.c -- (use pico to create the file, ls to see
that it's there, gcc to compile it, etc.). This pro-
gram (tenfold) should read in an integer using scanf
and print out its value multiplied by ten. NOTE:
when you run the program it will be waiting for you
to type in a number-- don't make it wait too long!

UNIX NOTES PAGE 12 of 14

NEW COMMAND SUMMARY:

compile a file:
 gcc filename
 (must end in “.c”!)

edit a file or create a file with the editor:
 pico filename

mail a file to someone:
 cat filename | mail -s “whatever subject” someone@somewhere.xxx

UNIX NOTES PAGE 13 of 14

REDIRECTING STANDARD INPUT:

Programs typically require some information from the outside (input).

Every program in Unix has at least one input pathway: standard input

Standard input by default comes from the keyboard (you type it).

EXAMPLE:

atrium46:arnow> ls -l
total 4
-rw------- 1 arnow faculty 115 Sep 5 15:48 add.c
-rw------- 1 arnow faculty 6 Sep 5 15:52 data1
atrium46:arnow> cat -n add.c
 1 #include <stdio.h>
 2
 3 int main() {
 4 int x, y;
 5 scanf("%d", &x);
 6 scanf("%d", &y);
 7 printf("%d\n", x+y);
 8 return 0;
 9 }
atrium46:arnow> gcc add.c
atrium46:arnow> mv a.out add
atrium46:arnow> ls -l
total 18
-rwx--x--x 1 arnow faculty 6620 Sep 5 15:53 add
-rw------- 1 arnow faculty 115 Sep 5 15:48 add.c
-rw------- 1 arnow faculty 6 Sep 5 15:52 data1
atrium46:arnow> add
34
12
46
atrium46:arnow>

Here, I typed "add" and the program waited first for me to type in an integer for
the scanf in line 5 (34) and then for me to type in an integer for the scanf in
line 6 (12). Once I did so, it gave me the sum (46) as output.

But look: I have a file, data1, which I created using pico. And that file contains
34 and 12:

atrium46:arnow> cat data1
34
12
atrium46:arnow>

I want to use this file's data for my add program by REDIRECTING STANDARD INPUT:

atrium46:arnow> add < data1
46
atrium46:arnow>

See? I didn't type anything for the program-- it got its input from data1.

UNIX NOTES PAGE 14 of 14

