Name

CISC 3142 — Programming Paradigms in C++
Fall <22
Exam #2

Make sure you follow adhere to the following:

proper parameter transmission return value transmission, and const receiver
proper use of member/friend non-member functions.

please do not write any inline functions... put all function bodies in the .cpp file.
please use member initialization lists in your constructors.

if writing a file, please be complete... #include’s, using’s etc

You are to code a module pair, arr utils.h/.cpp that provides two non-member (i.e.,
C-like) functions:

e reverse: accepts an array and the number of elements and reverses the array in-
place.

e write: accepts a file name, an array, and the number of elements, and writes the
elements out to the file

For extra credit, use pointer and pointer notation (rather than subscripts) in the headers and
bodies

a. Codethearr utils.h file here:

#ifndef ARR UTILS H
#define ARR UTILS H

#include <string>

void reverse (int arr[], int n);
void write(std::string filename, int arr[], int n);

#endif

I did not deduct for the omission of a #include guard or #pragma once




b. Codethe arr utils.cpp file here:

#include <fstream>
#include <string>

#include “arr utils.h”

using namespace std;

}

void write(string filename,
ofstream ofs (filename.
if (!'ofs) throw “File

for (int i = 0; 1 < n;
ofs << arr([i];
ofs.close();

void reverse (int arr[], int n) {
for (int 1 = 0; 1 < n/2; i++)
int t = arr[i];
arr[i] = arr[n-i-11;
arr[n-i-1] = t;

int arr([], int n)
c_str());
not found”;

it+)

{




Write a C++ program that reads the file numbers. text (containing a sequence of integers)
into an array, (using the >> operator) reverses the array by calling reverse of question 1,
and then writes the resulting array to the file “reversed.text” using the write function
of question 1. You can assume not more than 100 numbers.

#include <iostream>
#include “arr utils.h”

using namespace std;
int main () {
ifstream ifs (“numbers.text”);
int arr[100] arr;
int size = 0;
ifs >> arr[size];
while (ifs) {
size++;
ifs >> arr[size];

}

reverse (arr, size);
write (“reversed.text”, arr, size);




You are to code a class pair, person.h/.cpp, for the definition of a Person class,
containing the following:

e two data members: a name (string) and an age (integer).

e aconstructor accepting a name (defaults to “John Doe”) and age (defaults to 0)

e a << operator that prints out the right operand to the left operand; e.g.; cout << p,
where p is declared to be a Person object

e a >> operator that reads the right operand from the left operand; e.g. cin >> p, where
p is declared to be a Person object.

Don’t forget the << and >> operator should both work for standard streams (cout and cin
respectively) as well as files.

a. Code the person.h file here:

class Person {
friend operator <<(ostream &os, const Person &person);
friend operator >>(istream &os, Person &person);
public:
Person (string name="John Doe”, int age=0);
private:
String name;
int age;

i




b. Code the person.cpp file here:

#include <iostream>
#include “person.h”

using namespace std;
ostream &operator << (ostream &os, const Person &person)

0s << person.name << % % << person.age;
Return os;

istream &operator >>(istream &os, Person é&person) {
is >> person.name >> person.age;
return is;

Person: :Person(string name, int age) : name (name), age (age)




Write a full class definition (.h and .cpp files) of a class named Integer with the following:

e an integer data member

e aconstructor that accepts an integer used to initialize the data member. The parameter
should have a default of 0.

e A << operator that prints the value of the data member to the specified stream

e A >> operator that inputs the data member from the specified stream

e A+ operator (adds two integers returning a third Integer object)

e A += operator (in-place addition)

e A - (negation) unary operator; returns an Integer containing the negation of the

receiver (which remains unchanged)

a. Codethe integer.n file here

class Integer {
friend ostream &operator << (ostream &os, const Integer &i);
friend istream &operator >>(istream &os, Integer &i);
friend Integer operator + (const Integer &il, const Integer &iZ2);
public:

Integer (int val = 0);
Integer &operator +=(const Integer &i);
Integer operator —() const;

private:

int value;

b




b. Codethe integer. cpp file here

#include “iostream”
#include “integer.h”

Using namespace std;

ostream & operator << (ostream &os, const Integer &i) {
os << val;
return oOs;

istream &operator >>(istream &os, Integer &i) {
is >> val;
return is;

Integer operator +(const Integer &il, const Integer &i2) {
Integer result = 1il;
return result += i2;

Integer::Integer (int val) : val(val) {}

Integer &Integer::operator +=(const Integer &i) {
val += i.val;
return *this;

Integer Integer::operator —() const {
Integer result(-val);
Return result;




5. Turn the functions of question 1 into function templates

template <typename T>
void reverse (T arr[], int n) {
for (int 1 = 0; 1 < n/2; 1i++)
T t = arr

template <typename T>

void write(string filename, T arr[], int n) {
ofstream ofs(s.c_str());
if (!'ofs) throw “File not found”;

for (int 1 = 0; 1 < n; 1i++)
ofs << arr[i];
ofs.close();




6. Revisiting question 2...

a. Show the lines of code that change if the program is supposed to read, reverse and write a
file of Person data.

Person arr[100];

... and probably the name of the file (probably not “numbers.text”)




b. Suppose the program also printed out the sum of values in the files. Would that change
anything for part a?

Will fail on compilation error when attempting to calculate sum... Person class has no +
operator

c. Would part b be answered differently if part a was done for Integer

Would work fine even with the sum, since a + operator has been defined for Integer




(Optional) Turn the Integer class of question 4 into a Numbe r template where the data member

is to be instantiated. That is, one should be able to instantiate the Number class to contain int

values, or double values (or long int values, etc)

#ifndef NUMBER H
#define NUMBER H

#include <iostream>

template <typename T>
class Number {
friend std::ostream &operator <<(std::ostream &os,
0os << num.val;
return oOs;
}
friend std::istream &operator >>(std::istream &is,
is >> num.val;
return is;
}
friend Number<T> operator +(const Number<T> &numl,
return Number (numl.val) += num2;
}
public:
Number (T val = 0) : val(val) {}
Number &operator +=(const Number num) {
val += num.val;
return *this;
}
Number operator -() {
return Number (-val) ;
}
private:
T val;
i

#endif

const Number<T> &num)

Number<T> &num) {

const Number<T> &num?2)

{

{

Does question 2 — using a Number instantiated for an int still work for the Number class? What

about if it is instantiated for a double?

Yes because there is a + operator




