
Name        

  

CISC 3142 – Programming Paradigms in C++ 

Fall ‘22 

Exam #1  

Solutions 

  

1. (15 points) The file numbers.data, consists of groups of integers, each preceded by a header 

value. For example:  

3  4 7 1  
4  2 4 6 8 

Write a complete C++ program that reads the file, prints out the maximum value in each 

group; when finished (i.e., when all the data has been read), the maximum value across all 

groups should be printed, as well as the number of groups processed. For example, given the 

above file, the output would be: 

Max of group #1: 7 

Max of group #2: 8 

Overall max: 8 

2 groups processed   

• Your functions should come after your main function.  

• Make sure you include all necessary #includes, etc.,  

• Make sure you include the logic for testing the successful opening of the file-- if the file 

is not there... print out "File not found" and terminate the program. 

  



 

#include <iostream> 

#include <fstream> 

#include <cstdlib> 

 

using namespace std; 

 

int main() { 

     ifstream infile("numbers.data"); 

     if (!infile) { 

          throw string("File not found"); 

          exit(1); 

     } 

 

     int globalMax; 

     bool first = true;   

 

     int header; 

     int numGroups = 0; 

     infile >> header; 

     while (infile) { 

          numGroups++; 

          int max; 

          infile >> max; 

          for (int i = 1; i < header; i++) { 

               int n; 

               infile >> n; 

               if (n > max) max = n; 

          } 

          cout << "max: " << max << endl; 

          if (first || max > globalMax) globalMax = max; 

          if (first) first = false; 

          infile >> header; 

     } 

     cout << "global max: " << globalMax << endl; 

     cout << "groupsProcessed: " << numGroups << endl; 

}  

    



2. (15 points) Write a Java class named PosInt, that represents positive integers, i.e., integers 

greater than 0, with the following behavior: 

• An integer instance variable to contain the value 

• A constructor that accepts an integer argument that is assigned to the instance variable. If 

the argument passed is not positive, an Exception is thrown with the message 

"Constructor passed non-positive value". 

• A default constructor that initializes the value of the instance variable to 1. For full credit, 

you must use the integer-argument constructor when implementing this method. 

• A copy constructor that accepts a PosInt object and copies its values to the new 

(receiver) object.  

• A copy method that accepts a(nother) PosInt argument and copies the argument to the 

receiver. The receiver is returned as the value of the function. 

• An addInPlace method that accepts a(nother) PosInt argument and adds the argument 

to the receiver. The receiver is returned as the value of the function. 

• An add method that accepts a(nother) PosInt argument and returns the sum as a new 

PosInt object. 

For full credit, you must leverage: 

• either addInPlace using add, or add using addInplace. 

• the copy constructor using the copy method 

 

 

 
class PosInt  { 

     PosInt(int val) throws Exception { 

          if (val <= 0) throw new Exception("Negative"); 

          this.val = val; 

     } 

     PosInt() throws Exception {this(1);} 

     PosInt(PosInt posInt) {copy(posInt);} 

 

     void copy(PosInt posInt) { val = posInt.val;} 

 

     PosInt addInPlace(PosInt posInt) { 

          val += posInt.val; 

          return this; 

     } 

     PosInt add (PosInt posInt) { 

          PosInt result = new PosInt(posInt); 

          return result.addInPlace(posInt); 

     } 

 

     private int val; 

}   



 

3.  

a. (5 points) The variables ip1 and ip2 have both been declared as pointers to 
integers, and have been assigned values (i.e., they are each pointing to an integer 
value). Write the code to exchange the values of these two variables (so that after 
the swap ip1 points to what ip2 originally pointed to and vice-versa-- in other 
words, in this exercise, you are swapping the pointers). Declare any necessary 
variables. 

 

 
 

 

 
   int *tp = ip1; 

   ip1 = ip2; 

   ip2 = tp; 

 

 

 

 

b. (5 points) The variables ip1 and ip2 have both been declared as pointers to 
integers and have been assigned addresses. Write the code to exchange the two 
integers (so that after the swap ip1 still points at the same location, but it now 
contains the integer value originally contained in the location pointed to by ip2; and 
vice versa-- in other words, in this exercise you are swapping the integers, not the 
pointers). Declare any necessary variables. 

 

 
 

 

int t = *ip1; 

*ip1 = *ip2; 

*ip2 = t; 

 



c. (5 points) Write a function that swaps two integers using call-by-reference 

 

 
 

void swap(int &x, int &y) { 

 int t = x; 

 x = y; 

 y = t; 

} 

 

 

 

 

 

 

 

 

d. (3 points) Write the code to call the function of part c for the integer variables x and y 

 
 

swap(x, y); 

 

 

 

 

 

 

 

e. (5 points) Write a function that swaps two integers by passing pointers to the integers 

(i.e., ‘call-by- pointer’) 

 

 
 

void swap(int *xp, int *yp) { 

 int t = *xp; 

 *xp = *yp; 

 *yp = t; 

} 

 

 

 

 

 

f. (3 points) Write the code to call the function of part e for the integer variables x and y 

 

 
 

swap(&x, &y); 

 



 

 

 

4.  

a. (10 points) Write a function, find, that accepts an array of integers, the number of 

elements in the array, and an integer value, and returns the position (index) of the 

value in the array, if the integer value appears in the array, and -1 if it is not in the 

array. 

 

 
 

int find(int arr[], int n, int val) { 

 for (int i = 0; i < n; i++) 

  if (arr[i] == val) return i; 

 return -1; 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. (5 points) Write some code that declares, and initializes, an array to the values 1...10, 

prompts the user for a number, searches the array (using find) for the number, and 

prints the result. You do not have to write a full program, just the code to accomplish 

the this. 

 

 
 

int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; 

 

cout << "#? "; 

cin >> val; 

 

cout << find(a, 10, val) << endl; 

 

  



5.   

a. (8 points) Recode the find function of question 4 as a function template 

 

 
 

template <typename T> 

int find(T arr[], int n, T val) { 

 for (int i = 0; i < n; i++) 

  if (arr[i] == val) return i; 

 return -1; 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. (Optional 5 points) Part b of question 4 and part b of question 6 ask you to write 

code that uses the function and class template of their part a’s respectively. Why am I 

not asking that of you here? 

 

 

 
Instantiating a function template by calling it with arguments looks 

just like a function call itself (unless there’s an ambiguity and one 

must provide an explicit instantiation). So this would look just like 

part b of #4 

 

 

 

 



 

6.  

a. (12 points) Code a Pair class template, but unlike the one presented in class, the 

types of the two elements of this Pair can be different. The template should include 

the following member functions: 

 

• Two data members of (possibly) different types 

• A constructor that accepts two parameters and assigns them to the first and 

second data members respectively. 

• getFirst and getSecond member functions that return the corresponding data 

member 

• a print function that prints the pair in the format: 

( first,  second) 

 

 

 

 
  template <typename F, typename S> 

  class Pair { 

  public: 

   Pair(F f, S s) : first(f), second(s) {} 

    

   F getFirst() {return first;} 

   S getSecond() {return second;} 

 

   void print() { 

  cout << "(" << first << ", " << second << ")"; 

   } 

 

  private: 

   F first; 

   S second; 

  }; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



b. (4 points) Write some code that instantiates and initializes a Pair object containing: 

 

• the integer (17) as the first element and the string (“hello”) as the second 

• the doubles 2.1, and 5.4 as the first and second elements respectively 

 

 
 

Pair<int, string> p1(17, “hello”); 

Pair<double, double> p2(2.1, 5.4); 

 

 

 

 

 

 

 

 

c. (5 points) The Pair template presented in class had a swap function, but this one 

does not. Why not? 

 

 

 

Can’t swap the first and second data members if their types are different 

 


