
 Name

CISC 3115 – Modern Programming Techniques
Fall 2024

Exam 1 Solutions

Part I. Answer all of the following (70 points)

1. (10 points) Write a Counter class with the following:

• a single integer instance variable initialized to 0
• up and down methods
• a toString method

please make sure to use public and private properly on the members of the class.

class Counter {
 public void up() {val++;}
 public void down() {val--;}
 public String toString() {return val;}

 private int val = 0;
}

2.

a. (4 points) A Container class has a find method that accepts a value as an
argument and returns the location of that value in the container, or -1 if it’s not
there. Write the method contains (also a member of the class) that also accepts a
value as an argument but returns a boolean indicating whether the value is in the
container or not. You know nothing else about the container’s internals so
contains should be written by leveraging find.

 public boolean contains(int val) {return find(val) != -1;}

b. (6 points) Write some code that creates a Container object, adds the numbers 1
through 10 to the container (using a for loop), prints the container (using
toString), replaces the first element of the container with the number 100, and
finally prompts the user at the keyboard for an integer (assume a Scanner object
has already been declared and created), and prints out whether the number is in
the container. The Container class has the usual add, toString, find,
contains, get, and set methods.

 Container c = new Container();

 for (int i = 1; i <= 10; i++)
 c.add(i);
 System.out.println(c);
 c.set(0, 100);
 System.out.print(“Enter a number to search for: “);
 int num = scanner.nextInt();
 if (c.contains(num)
 System.out.print(num + “ is in the container”);
 else
 System.out.print(num + “ is not in the container”);

3.

a. (4 points) Write two constructors for a Color class with r, g, b integer instance
variables. The first constructor should accept three integer arguments and use them
to initialize the instance variables. The second is a default constructor that
initializes the Color to black (0 intensity for all three color components) by
leveraging the 3-argument constructor.

 Color(int r, int g, int b) {
 This.r = r;

This.g = g;
This.b = b;

 }

 Color() {this(0, 0, 0);}

b. (3 points) Write the method isGrey for the Color class (a color is grey if all
three color components have the same intensity).

 public boolean isGrey() {return r = g && g == b;}

c. (3 points) Declare a class variable (i.e., only one copy for the Color class) named
GREEN, that references a Color object (which you create as well) representing
pure green.

 public static Color GREEN = new Color(0, 255, 0);

final is ok here… or not

4.
a. (4 points) Write the toString method for a Quadrilateral class implemented

using four Point instance variables p1, p2, p3, and p4. The methods should
print out the four variables separated by commas.

public String toString() {
 return p1 + “, “ + p2 + “, “ + p3 + “, “ + p4;
}

b. (6 points) The Line class accepts two Point objects for its constructor, and has a
length method. Write the method isRhombus of the above Quadrilateral
class, that creates four Line objects (side1-side4) corresponding to the sides of
the figure, and returns true if all four sides are equal in length. (Assume the sides
are p1-p2, p2-p3, p3-p4,and p4-p1)

public boolean isRhombus() {
 Line
 Side1 = new Line(01, o2),
 Side2 = new Line(p2, p3),
 Side3 = new Line(p3, p4),
 Side4 = new Line(p4, p1);

 return

side1.lenght() == side2.length() &&
 side2.length() == side3.length() &&
 side3.length() == side4.length() &&
 side4.length() == side1.length();
}

5.

a. (5 points) Assume the existence of a PhonebookEntry class containing the
methods getName and getNumber (no first name). Declare the instance variables
of the Phonebook class (implemented as a partially populated array of
PhonebookEntry, i.e., an array and a size)

private int size = 0;
private PhonebookEntry [] entries = new PhonebookEntry[100];

b. (5 points) Write the reverseLookup method of the Phonebook class that

accepts a phone number (String) and returns the corresponding name, or null if
the number is not found (use the instance variables name of part a).

public String reverseLookup(String number) {
 for (int i = 0; i < size; i++)
 if entries[i].getNumber.equals(number)

 return entries.getName();
 return null;
}

6.

a. (7 points) Write an immutable integer class containing a single integer value, a
constructor that initializes that value to its argument, and the methods add, mul,
and toString (sub or div methods do not need be written).

class ImmInt {
 ImmInt(int val) {this.val = val;}

 ImmInt add(int other) {return new ImmInt(val + other.val;}
 ImmInt mul(int other) {return new ImmInt(val * other.val;}

 public String toString() {return val + " ";}
}

b. (3 points) Declare three objects of this class, initialized to 1, 2,and 3, and print
the result of multiplying the sum of the first two by the third

ImmInt
 imm1 = new ImmInt(1),
 imm2 = new ImmInt(2),
 imm3 = new ImmInt(3);
System.out.println(imm1.add(imm2).mul(imm3)); // … or imm3.mul(imm1.add(imm2));

7.

a. (5 points) Write (just) the method increaseBy of a mutable integer class (again
containing a single integer value).

public MutInt increaseBy(MutInt other) {
 val += other.val;
 Return this;
}

b. (5 points) Declare three objects of this class, initialized to 1, 2, and 3, and print the
result of multiplying the sum of the first two by the third. What are the values of
the three objects after this operation.

MutInt
 mut1 = new MutInt(1),
 mut2 = new MutInt(2),
 mut3 = new MutInt(3);
System.out.println(imm1.add(imm2).mul(imm3)); // or imm3.mul(imm1.add(imm2));

Part II. Answer one of the following two questions (20 points):

8. Given the following app (the main is in the CarDemo class):

class Engine {
 public Engine(boolean isHybrid, int numCylinders) {
 this.isHybrid = isHybrid;
 this.numCylinders = numCylinders;
 }
 public Engine() {this(false, 4);}

 public int mpg() {return 60/numCylinders;}

 public String toString() {
 return numCylinders + " cylinder" + (isHybrid ? " hybrid" : "");
 }

 private boolean isHybrid;
 private int numCylinders;
}

class Car {
 public Car(int year, String model, Engine engine) {
 this.year = year;
 this.model = model;
 this.engine = engine;
 }
 public Car(String model) {this(2018, model, new Engine());}

 public int mpg() {return engine.mpg();}

 public String toString() {
 return "a " + year + " " + model + " " + engine;
 }

 private int year;
 private String model;
 private Engine engine;
}

class CarDemo {
 public static void main(String [] args) {
 Engine engine = new Engine(true, 6);
 Car car1 = new Car(2017, "Impala", engine);
 System.out.println("car1: " + car1);
 System.out.println("car1's mpg: " + car1.mpg());

 Car car2 = new Car("Malibu");
 System.out.println("car2: " + car2);
 System.out.println("car2's mpg: " + car2.mpg());
 }
}

a. (10 points)What is output by the program’s execution?

 car1: a 2017 Impala 6 cylinder hybrid
 car1’s mpg: 10 mpg
 car2: a 2018 Malibu 4 cylinder
 car2’s mpg: 15

b. (5 points) Which method is a delegation method? What makes it a delegation method?

 The mpg method of the Car class … all it does is call the mpg method of Engine

c. (5 points) Can you see a problem with an Engine being created with zero (0) cylinders
(it’s more than simply – ‘a Car can’t have 0 cylinders’)? What is the problem, and what
would you do about it (nothing detailed—just a sentence is fine)?

 mpg divides 60 by the number of cylinders… for 0 cylinders this would result in a 0-divide

9. (20 points) One variation of the PhonebookEntry class of Lab 2.5 is to represent

the phone number as a class, PhoneNumber with three integer instance variables for
the individual components: area-code, exchange and line number (for example, the
number (718) 951-5000 consists of the area code 718, the exchange 951, and the line
number 5000). Here is a specification for such a class

• State

o three integer instance variables representing the area code, exchange, and
line-number of the phone number

• Behavior
o a constructor that accepts three integers representing the area code,

exchange, and line number respectively
o a constructor that accepts two integers – the exchange and line number,

and sets the area code to 800. To receive full credit for this, you must
invoke the three parameter constructor.

o getAreaCode, getExchange, and getLineNumber methods

o an equals method that returns whether two PhoneNumber objects are
equal (i.e., their area code, exchange, and line numbers are all equal). The
method header is

boolean equals(PhoneNumber otherNumber)

(notice the header is similar to that of add of the immutable integer class;
the logic is similar, but you are comparing the instance variables of the
receiver and parameter rather than adding them).

o A toString method that returns the phone number in the format
(nnn)nnn-nnnn.

o a (static) read method that reads in three integers from the supplied
Scanner (no prompts please), and uses them to create and initialize a
PhoneNumber object (using the three-parm constructor), and returns the
new object. The method header is

static PhoneNumber read(Scanner scanner)

Provide the class definition of the PhoneNumber class. Make sure you include
public and private, and use them appropriately.

import java.util.Scanner;

class PhoneNumber {
 PhoneNumber(int areaCode, int exchange, int lineNumber) {
 this.areaCode = areaCode;
 this.exchange = exchange;
 this.lineNumber = lineNumber;
 }
 PhoneNumber(int exchange, int lineNumber) {
 this(800, exchange, lineNumber);
 }

 public int getAreaCode() {return areaCode;}
 public int getExchange() {return exchange;}
 public int getLineNumber() {return lineNumber;}

 public boolean equals(PhoneNumber other) {
 return areaCode== other.areaCode &&
 exchange == other.exchange &&
 lineNumber == other.lineNumber;
 }

 public static PhoneNumber read(Scanner scanner) {
 if (!scanner.hasNextInt()) return null;
 int
 areaCode = scanner.nextInt(),
 exchange = scanner.nextInt(),
 lineNumber = scanner.nextInt();
 return new PhoneNumber(areaCode, exchange, lineNumber);
 }

 public String toString() {
 return "(" + areaCode + ")" + exchange + "-" + lineNumber;
 }

 private int areaCode, exchange, lineNumber;
}

Part III (10 points). Answer what you can and/or want to.

10. Did Lab 0 help you warm up in terms of getting back into coding?

Did you develop your Labs in your IDE and then CodeLab? How was that
experience? When CodeLab rejected your code that seemed to work in your IDE, did
you eventually understand what your mistakes were? How did you get past CodeLab
rejecting your code? … Query? Friend?

The classes in Lecture/Lab2, were anticipated by first introducing each of them as
1115-like applications (i.e., no objects, just standalone local variables and static
method calls within a single class) in Lecture/Lab 1. Did you find this helpful? In
particular was the transition over to instance variables and methods, objects, and
receivers easier because you were already familiar with the basic details of the
application; e.g., was the Container class of Lecture 2 easier to understand because
you were familiar with the similar (non-object) version of the container from Lecture
1, or did that parallelism just make matters more confusing?

