
CISC 1115 Spring 2021 Final Exam Questions & Answers

1. (12 points) Write Java code to repeatedly print each single digit between 1 and 9 the number of

times based upon its numeric value. Thus, you would get a triangle of the shape below where 1

prints once, 2 twice … and 9 prints 9 times.

1

22

333

4444

55555

666666

7777777

88888888

999999999

2. (14 points) Write Java code to read strings of lower-case letters from the keyboard and count the

number of vowels in each word. (vowels are a,e,i,o and u). When all strings have been read in,

print the string that has the largest number of vowels (duplicates included) and how many vowels

were in the string. When more than one string has the greatest number of vowels, print the first

string found with that number. For example, with input of she groceries yourselves here

radio, the correct answer would be: groceries – 4 vowels.

3. (14 points)

a. Show how the code executes step-by step. Display (trace) the values of x and y as they

change.

int x = 7;

 int y = 3;

 //print x and y values at this point

 while (x+y < 13){

 x = x + 2;

 y = y - 1;

 //print x and y values at this point

 do {

 x--;

 y++;

 //print x and y values at this point

 } while (x>10);

 }

x

y

b.

for (int i=12; i>9; i--){

for (int j=i-2;j< 15;j=j+2)

 //print i and j values at this point

 }

i

j

4. (11 points) Fill in the table below to trace the values of the arrays in main at various points.

 int[] array1 = {10,20,30,40,50};

 int[] array2 = {5,4,3,2,1};

 int[] array3 = new int[5];

 //print the array values at this point

 doIt(array1, array2);

 //print the array values at this point

 array2 = array1;

 //print the values at this point

 array3 = doIt(array1,array2);

 //print the array values at this point

 } //end of main

 public static int[] doIt(int[] arr1, int[] arr2){

 int[] arr3 = new int[5];

 for (int i=0; i<arr1.length;i++)

 arr3[i] = arr1[i]+arr2[arr2.length-1-i];

 return arr3;

 }

Values of the arrays below in main before first invocation of doIt

array1

array2

array3

Values of the arrays below in main after first invocation of doIt

array1

array2

array3

Values of the arrays below in main before second invocation of doIt

array1

array2

Values of the arrays below in main after second invocation of doIt

array1

array2

array3

(5 or 6 13 points pick one)

5. You are playing a game that has two dice – one die has 6 sides numbered 1 through 6 and the

second die has 8 sides numbered 1 through 8. A turn involves rolling both die together. Write Java

code to play 1,000 turns and keep track of the sum of the two dice in each roll i.e, (2 through 14).

When all 1,000 turns have been completed, print a formatted table showing the value of the sum

of the two dice (2 through 14) and the number of times that value occurred.

6. Write Java code to do the following: Read from the keyboard an unknown number of values each of

which is between 1 and 100. If a number entered is not between 1 and 100 (except for -1 which

ends the input) print an error message. When a -1 is read in, stop the loop and print which of the

numbers between 1 and 100 were not read in.

7. (6 points – 2 points each) Perform the following conversions. You must show how you computed

your answer.

 a. 1011111 (base 2) to base 10 Answer ________________________

b. 246 (base 10) to base 2

Answer ________________________

c. BA (base 16) to base 2

Answer ________________________

8. (30 points) Write a complete Java program with comments in main and in each method.

A city is divided into 100 neighborhoods, each with a unique name. Every three months, each

neighborhood reports the prices of four houses sold; not all neighborhoods have sales to report every

three months. A file contains the sales data in the format:
neighborhood price price price price

For example, Midtown 23055 10000 19000 32009 (Note: prices are in whole dollars)

Design a Java class with a main method that does the following:

1. Invokes method readData which reads the data from the input file, stores values into arrays and

returns the number of records read in.

2. Invokes method modifyData, passing an array of double as the parameter. The method modifies

the value in the array based on rules specified below.

3. Invokes method sortArrays to parallel sort the arrays of double and String. The method should

be invoked only once.

4. In main, prints to a file (name of your choice) the neighborhood name and average of the three

neighborhoods that have the highest average prices, in descending order (highest average price

first), and the three neighborhoods that have the lowest average prices in ascending order

(lowest average price first). The neighborhood should be left adjusted, the price right adjusted

with two decimal places and the header row should be included. The output should be in the

form:
Neighborhood Avg Price

Eastside 108162.50

Greenfields 67576.06

Southside 60967.78

Neighborhood Avg Price

Chelsea 47663.28

Westside 48830.93

Uptown 57200.00

Method Details:

I. readData:

a. Receives an array of String and array of double

b. Reads the neighborhood name as String and the four prices as integer from a file (name

of your choice)

c. Stores the neighborhood name in the array of String and the average of the 4 prices in

the array of double.

d. Returns the number of neighborhood records read in as an integer

II. modifyData:

a. Receives an array of double as the parameter and an integer representing the number of

records read in by readData

b. Computes the overall average home price for all homes read in by readData (the

average of the averages)

c. For the number of records read in from the input file, increases the average price for

each neighborhood by 10% if the average home price for that neighborhood is below the

overall average home price homes sold and decreases the average price for each

neighborhood by 15% if the average home price for that neighborhood is above the

overall average.

III. sortArrays:

a. Receives the arrays of double and String and an integer representing the number of

records read in by readData as parameters

b. Parallel sorts the arrays, only for the number of records read in by readData, with the

primary sort on the array of double in descending order.

1. (A)

 for (int i=0; i<10; i++){

 for (int j=0; j<=i-1;j++){

 System.out.print(i);

 }

 System.out.println();

(B)// One way
 for (char ch= 'A'; ch<='Z'; ch++){

 for (int i=0; i<=ch-'A';i++){

 System.out.print(ch);

 }

 System.out.println();

 }

// Another way

 char ch = 'A';

 for (int i = 0; i<26; i++){

 for (int j=0; j<=i;j++){

 System.out.print(ch);

 }

 System.out.println();

 ch++;

 }

 // and a third way

 int max=1;

 for (char chr = 'A';chr<='Z';chr++){

 for (int i=0;i<max;i++){

 System.out.print(chr);

 }

 System.out.println();

 max++;

 }

2. Scanner input = new Scanner(System.in);

 int maxVowels = 0;

 String maxStr="";

 System.out.print("Enter string,999 to end: ");

 String str = "";

 while (input.hasNext()){

 str = input.next();

 if (str.equals("999")) break;

 int count=0;

 for (int i=0;i<str.length();i++){

 if (str.charAt(i)=='a'|| str.charAt(i)=='e'||

 str.charAt(i)=='i'|| str.charAt(i)=='o'||

 str.charAt(i)=='u')

 count++;

 }

 if (count > maxVowels){

 maxVowels = count;

 maxStr = str;

 }

 System.out.print("Enter string,999 to end: ");

 }

 System.out.println("String with max vowels is: "+ maxStr +" with "+maxVowels);

3.

x 7 9 8 10 9 11 10

y 3 2 3 2 3 2 3

i 12 12 12 11 11 11 10 10 10 10

j 10 12 14 9 11 13 8 10 12 14

4. (A)

Values of the arrays below in main before first invocation of doIt

array1 10 20 30 40 50

array2 5 4 3 2 1

array3 0 0 0 0 0

Values of the arrays below in main after first invocation of doIt

array1 10 20 30 40 50

array2 5 4 3 2 1

array3 0 0 0 0 0

Values of the arrays below in main before second invocation of doIt

array1 10 20 30 40 50

array2 10 20 30 40 50

Values of the arrays below in main after second invocation of doIt

array1 10 20 30 40 50

array2 10 20 30 40 50

array3 60 60 60 60 60

(B)

array1: 20 40 60 80 100

array2: 2 4 6 8 10

array3: 0 0 0 0 0

array1: 20 40 60 80 100

array2: 2 4 6 8 10

array3: 0 0 0 0 0

array2 = array1

array1: 20 40 60 80 100

array2: 20 40 60 80 100

array3: 0 0 0 0 0

array3 = doit(array1,array2)

array1: 20 40 60 80 100

array2: 20 40 60 80 100

 array3: 120 120 120 120 120

5.

(A)

 int [] pct = new int[15];

 int sum =0;

 int runs = 1000;

 for (int i=0; i<runs; i++){

 int roll = throwDie(1,6)+throwDie(1,8);

 pct[roll]++;

 }

 System.out.printf("%4s%6s%7s", "roll","count”);

 for (int i=2;i<15;i++){

 System.out.printf("\n%4d%6d%7.2f",i,pct[i]);

 }

 System.out.println();

 // method – can use Random class

 // not necessary to write a method

 public static int throwDie(int start, int end){

 return (start+ (int)((Math.random()*(end-start+1))));

 }

 (B)
 Scanner input = new Scanner(System.in);

 boolean[] flag = new boolean[101];

 System.out.println("Enter number between 1 and 100 or -1 to end: ");

 int num = input.nextInt();

 while (num != -1){

 if (num > 0 && num < 101)flag[num] = true;

 else System.out.println

 (num + " is invalid. Number must be between 1 and 100");

 System.out.println

 ("Enter number between 1 and 100 or -1 to end: ");

 num = input.nextInt();

 }

 System.out.println("These numbers were not read in:");

 for (int i=1; i<101;i++){

 if (!flag[i])

 System.out.print(i+" ");

 }

6. (A) a. 95 b. 11110110 c. 10111010

 (B) a. 93 b. 10111010 c. 11111001

7.

import java.io.File;

import java.io.FileReader;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.Scanner;

public class Main {

 public static void main(String[] args) throws IOException {

 File fileOut = new File("C:\\Temp\\buildingOutput.txt");

 PrintWriter output = new PrintWriter(fileOut);

 String[] names = new String[100];

 double avg[] = new double [100];

 int numRecs= readData(names, avg);

 modifyData(avg,numRecs);

 sortArray(avg, names,numRecs);

 // top 3, highest first

 output.printf("\n\n%12s%12s","Neighborhood","Avg Price");

 for (int i=0; i<3;i++){

 output.printf("\n%-12s%12.2f",names[i], avg[i]);

 }

 // lowest 3, smallest first

 output.printf("\n\n%12s%12s","Neighborhood","Avg Price");

 for (int i=numRecs-1; i>numRecs-4;i--){

 output.printf("\n%-12s%12.2f",names[i], avg[i]);

 }

 output.close();

 }

 public static int readData(String[] names, double[] avg)

 throws IOException{

 File fileIn = new File("C:\\Temp\\buildingInput.txt");

 Scanner input = new Scanner(fileIn);

 int count=0;

 while (input.hasNext()){

 double average = 0;

 String name = input.next();

 int[] price = new int[4];

 for (int i=0; i<4;i++) {

 price[i] = input.nextInt();

 average = average + price[i];

 }

 names[count] = name;

 avg[count] = average/4.0;

 count++;

 }

 input.close();

 return count;

 }

 public static void modifyData(double[] avg, int num){

 double overallAvg = 0;

 for (int i=0; i<num;i++){

 overallAvg = overallAvg + avg[i];

 }

 overallAvg = overallAvg/num;

 for (int i=0; i<num;i++){

 if (avg[i]<overallAvg) avg[i] = 1.1*avg[i]; (B) = .85*avg[i]

 else avg[i] = .85*avg[i]; (B) 1.2*avg[i]

 }

 }

 public static void sortArray(double[] primary,

 String [] secondary, int k){

 for (int i = 0; i < k; i++)

 {

 for (int j =0; j < k-1-i; j++)

 {

 if ((primary[j]< primary[j+1])) (B) >

 {

 double smaller = primary[j];

 primary[j] = primary[j+1];

 primary[j+1] = smaller;

 String small = secondary[j];

 secondary[j] = secondary[j+1];

 secondary[j+1] = small;

 }

 }

 }

 }

}

